Using the Surface Water Toolbox for Estimating Critical Flow Statistics

Webcast sponsored by EPA's Watershed Academy

Thursday, February 8, 2018 1:00pm – 3:00pm Eastern

Speakers:

- **Jenny Molloy,** Lead Environmental Protection Specialist, Water Permits Division, U.S. Environmental Protection Agency
- Brian Nickel, Environmental Engineer, Water Protection Division, Region 10, U.S. Environmental Protection Agency
- Julie Kiang, Supervisory Hydrologist, U.S. Geological Survey

1

Webcast Logistics

- To Ask a Question Type your question in the "Q&A" box on the right side of your screen and click the "Send" icon.
- To Report Technical Issues (such as audio problems) Type your issue in the "Q&A" box on the right side of your screen and click the "Send" icon. We will respond by posting an answer in the same "Questions" box.

Speakers

- Jenny Molloy, Lead Environmental Protection Specialist, Water Permits Division, U.S. Environmental Protection Agency
- Brian Nickel, Environmental Engineer, Water Protection Division, Region 10, U.S. Environmental Protection Agency
- Julie Kiang, Supervisory Hydrologist, U.S. Geological Survey

3

Using the Surface Water Toolbox for Estimating Critical Flow Statistics

Webcast sponsored by EPA's Watershed Academy

Thursday, February 8, 2018 1:00pm – 3:00pm Eastern

Speakers:

- Jenny Molloy, Lead Environmental Protection Specialist, Water Permits Division, U.S. Environmental Protection Agency
- Brian Nickel, Environmental Engineer, Water Protection Division, Region 10, U.S. Environmental Protection Agency
- Julie Kiang, Supervisory Hydrologist, U.S. Geological Survey

Use of SW Toolbox for NPDES Permitting

By Brian Nickel
EPA Region 10
NPDES Permits Unit

Permit Limits Overview

- NPDES permits contain the more stringent of two general types of limits for each parameter.
 - Technology-based (TBELs)
 - Based on the performance of available treatment technology and includes cost considerations.
 - Water Quality-based (WQBELs)
 - Derived from the ambient water quality standards necessary to meet water quality standards in the receiving water.
 - The cost of meeting water quality standards is not considered.

Water Quality-based Effluent Limits (WQBELs)

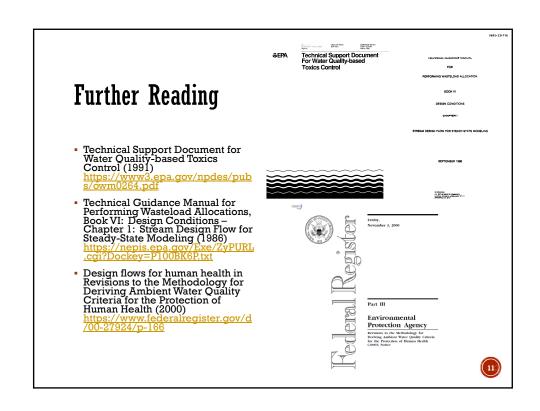
- Water quality criteria include:
 - A magnitude (e.g., 10 μg/L)
 - · An averaging period or duration, and
 - Most "acute" aquatic life criteria (also called criterion maximum concentrations or CMC) have an averaging period of 1 hour
 - Most "chronic" aquatic life criteria (also called criterion continuous concentrations or CCC) have an averaging period of 4 days.
 - An allowable excursion frequency.
 - Most aquatic life criteria have an allowable excursion frequency of once every three years.
 - Most human health criteria are based on a lifetime of exposure (~70 years).
- The goal of a WQBEL is to ensure compliance with all components of a water quality criterion (magnitude, duration, and frequency).

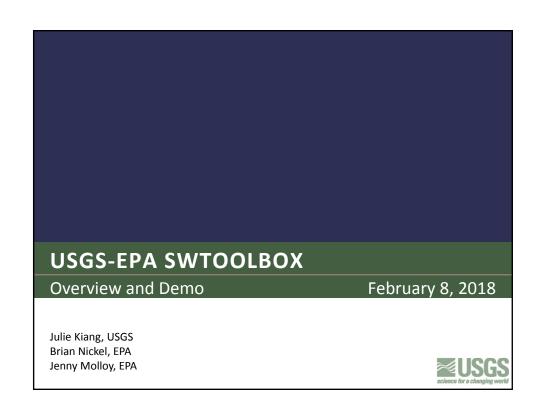
Calculating WQBELs

- Dynamic modeling
 - Attempts to use "real" data or statistical distributions for effluent and receiving water characteristics to arrive at limits that match the magnitude, duration, and frequency components of the criteria.
 - These are more accurate than steady-state models, but are more complex and require much more data to implement.
- Steady-state modeling
 - This approach is simpler and requires much less data than dynamic modeling techniques.
 - This is the approach for which critical stream flow statistics are necessary (assuming that dilution is being considered).

Background on Critical Flows

- The EPA's Technical Support Document for Water Quality-based Toxics Control (TSD) recommends critical flows for use in steady-state modeling.
 - Aquatic Life (Appendix D):
 - Hydrologically-based
 - 1Q10 for criterion maximum concentration (CMC or acute criteria)
 - 7Q10 for criterion continuous concentrate (CCC or chronic criteria)
 - Biologically-based
 - 1B3 for CMC/acute
 - 4B3 for CCC/chronic
 - Can be customized for any allowable averaging period and excursion frequency specified in the criteria.
 - Human Health (Section 4.6.2)
 - Harmonic Mean
 - 30Q5 for human health criteria for non-carcinogens was superseded by the "Revisions to the Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health" (65 FR 66444, November 3, 2000)
- Additional detail is provided in the Technical Guidance Manual for Performing Wasteload Allocations, Book VI: Design Conditions – Chapter 1: Stream Design Flow for Steady-State Modeling (1986).





Why SW Toolbox?

- Easily find and download stream gauge data
 - Map-based tool
 - By station ID
- Import data from non-USGS sources
- Better understand your data
 - Find number of excursions below critical flows per three years
 - Detect outliers
 - Detect trends
 - Compare datasets
 - Produce graphs
 - Time-series
 - · Frequency graphs

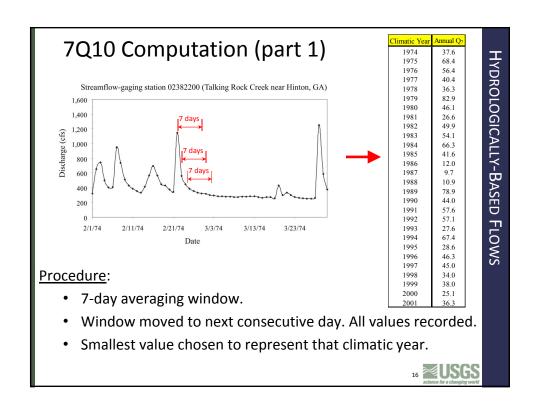
Background

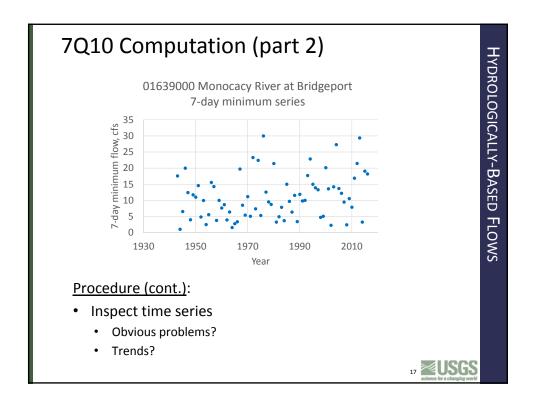
Joint EPA-USGS project on critical low flows (7Q10 and biologically-based flows)

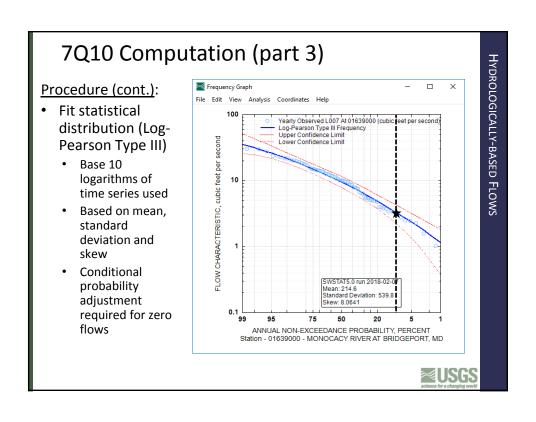
Goals:

- Improve and merge low flow software
- Investigate trends in low flows
- · Test different regionalization methods

Critical Low Flows


- Hydrologically-based flow statistics
 - 7Q10
 - 7Q2
 - Etc.
- Biologically-based flow statistics
 - 1B3
 - 4B3
 - Etc.
- Harmonic Mean


2/16/2018



HYDROLOGICALLY-BASED FLOWS: 7Q10 (AND FRIENDS)

Other hydrologically-based flows used same procedure, but:

- Different averaging window
- Different non-exceedance probability and return period

For example:

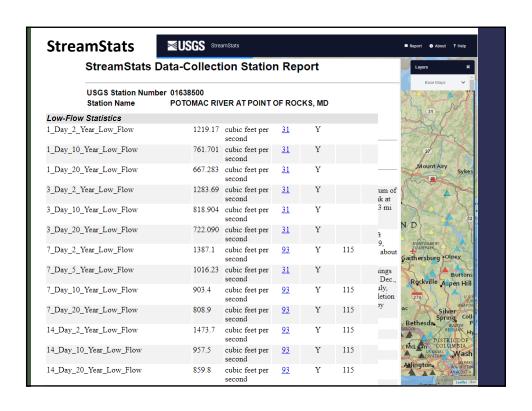
7Q2: 7-day minimum, 2-year return period (50% non-exceedance probability)

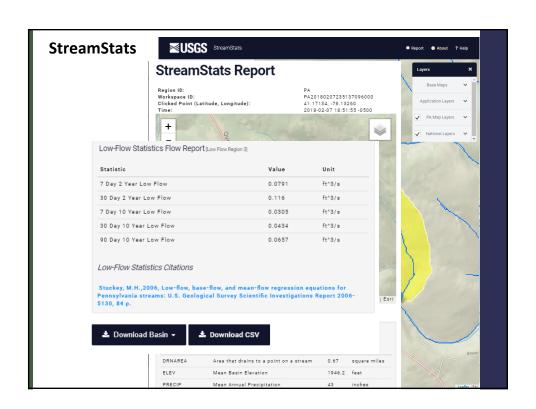
30Q2: 30-day minimum, 2-year return period (50% non-exceedance probability)

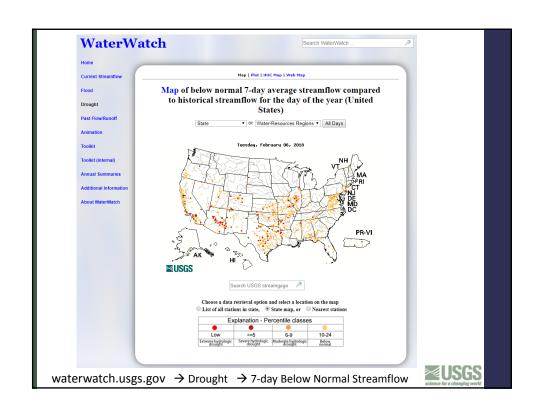
Note that a similar procedure is used for peak flow frequency analysis.

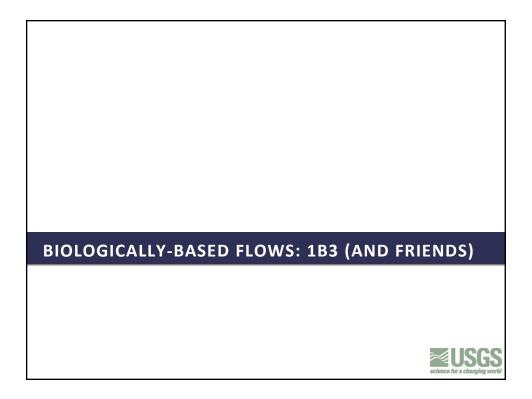
BUT, there are additional "extensions" and details that are NOT implemented in SWToolbox.

For additional info (upcoming)


Publication: Bulletin 17C Guidelines for Determining


Flood Flow Frequency
USGS software: PeakFQ


Key takeaway:


SWToolbox is NOT for flood frequency analysis.

Biologically-based flows

Developed by U.S. EPA ORD

Determined by computing the frequency of excursions below the design-flow threshold.

- Different averaging periods Examples: 1-day, 4-day, 30-day
- Average frequency of excursions allowed Example: once every 3 years

1B3: 1-day averaging, excursions once every 3 years

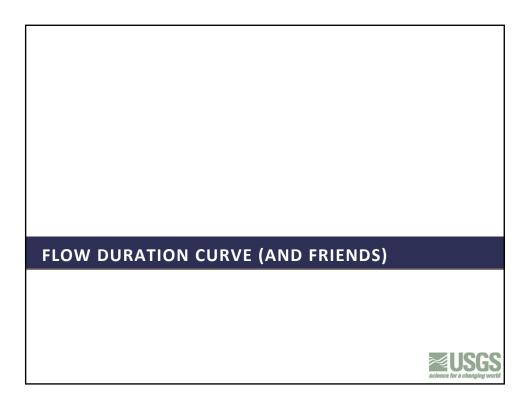
4B3: 4-day averaging, excursions once every 3 years

Additional details in EPA docs.

2/16/2018

Harmonic mean

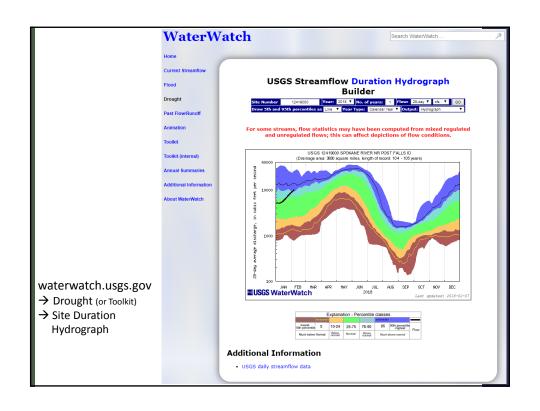
Recipricol of the mean of the recipricols

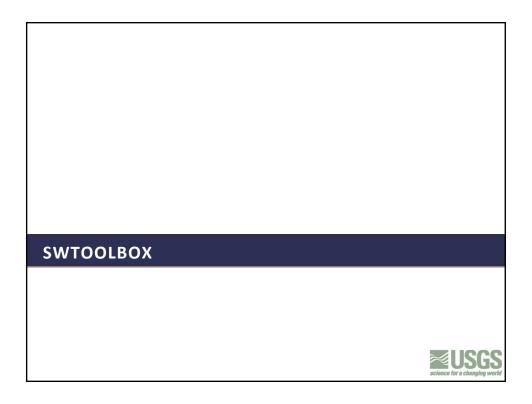

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}}$$

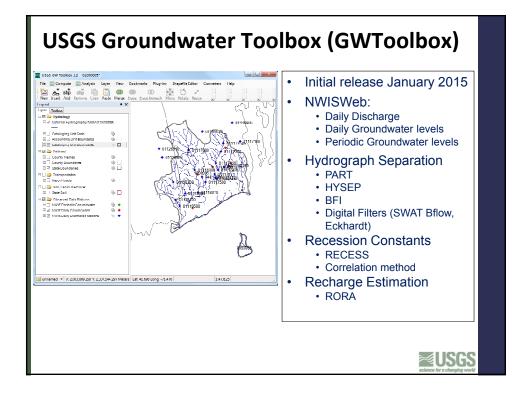
Where:

n is the number of data points x_1 through x_n are the data points.

2/16/2018


Flow Duration Curve


- Flow duration values: percentage of time a given flow is equaled or exceeded.
- Flow duration curve: Graphical representation of the flow-duration values for a station, usually plotted as log-probability graph
- Can be computed from daily, weekly, monthly, seasonal, annual, or other values from:
 - o The entire period of record
 - o A portion of the period of record selected to represent a particular condition



Surface Water Toolbox (SWToolbox)

- USGS SWSTAT
- SWTOOLBOX
- EPA DFLOW
- Primary functions:
 - Critical low flow computation
 - Flow duration computation
- Built in EPA BASINS (MapWindows) environment
 - USGS Ground Water Toolbox same environment (http://water.usgs.gov/ogw/gwtoolbox/)

SWToolbox

- Others who have contributed to software development:
 - Kate Flynn (retired, USGS)
 - Greg Granato (USGS New England WSC)
 - RESPEC consultants, particularly Paul Hummel and Tong Zhai
 - Software testers, many from EPA.

2/16/2018

Enhancements over previous SWSTAT and DFLOW

- CONSISTENCY between two agency programs
- Better graphics
- Output reports to document analysis
- Screening tools for time series
- More flexibility (data sources)

2/16/2018

Timeline

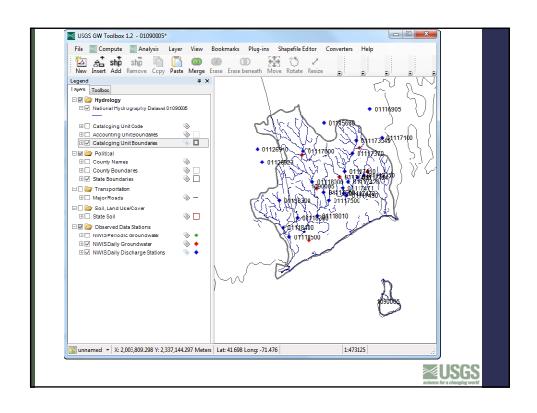
User Manual

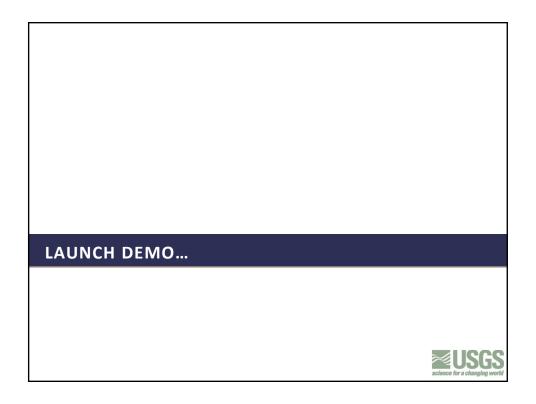
- Initial layout done.
- Will have copy for review next week.

Software Release

- Working out problem with R scripting (works on some computers, not others)
- Doing final testing of latest build (from last week)

Release both by end of month.


2/16/2018



Getting Started – build project

- Similar to EPA BASINS
- Select region of interest and Build project
- · A number of coverages are downloaded
 - NWIS Daily Discharge Stations automatic
- Select stations and use File/Data Download option to retrieve the USGS discharge data

QUESTIONS? SWToolboxTesting@usgs.gov

Questions?

- Please use the "Questions" box on the right slide of your screen.
- Time permitting, we will answer as many questions as we can.

Questions?

- Please use the "Questions" box on the right slide of your screen.
- Time permitting, we will answer as many questions as we can.

43

Jenny Molloy
U.S. EPA
Molloy.Jennifer@epa.gov

Brian Nickel
U.S. EPA
Nickel.Brian@epa.gov

Julie Kiang
U.S. Geological Survey
Jkiang@usgs.gov

Next Watershed Academy Webcast

Check back with us at www.epa.gov/watershedacademy for more details!

4.

Participation Certificate

https://www.epa.gov/sites/production/files/2018-02/documents/watershed_acad_webcast_certificate_020818_50 8.pdf

You may also download it from the "Downloads" pod.

Questions?

- Please use the "Questions" box on the right slide of your screen.
- Time permitting, we will answer as many questions as we can.

47

Thank You!