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Outline

« Background and objectives
* Field measurement
* Locations, instruments, and measurements.

 Results and discussion
» Chemical composition
» Source apportionment

» Takeaways
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Non-tailpipe emissions are becoming a larger fraction
of total vehicle emissions
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Study Objectives

 Characterize PM, - and PM,, concentration and compositions
near highways.

« Seek source markers for non-tailpipe emissions.

« Conduct source apportionment analysis to determine
contributions of non-tailpipe particles to PM, - and PM,j.
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Measurements were made near Southern California I-5
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Samples were taken from both sides of
highways
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PM, . and PM,, filter pairs were collected

upwind and downwind of highways
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Typical sampling periods:
- 0600-1000; 1000-1400; 1400-1800

« 1/28/2020-2/3/2020 (I-5); 18 sets
« 2/4/2020-2/10/2020 (I-710); 14 sets
« A total of 128 filters.




Filters were analyzed for source markers

Grawmetry PM mass

Mineral dust: Al, Si, Ca, and K;

Brake wear: Cu, Sb, Ba, Fe, Zr, Mo, and Sn;
Tire wear: Zn;

Concrete road wear: Ca and S

. . Organic, elemental carbon (OC and . - .
Thermal/Optical Analysis EC) and thermal fractions Tailpipe emissions

Primary salt: Cl- and Na*
Secondary salts: NO5, SO,%, and NH,*
Biomass burning: K*

Elements from sodium (Na) to

X-ray Fluorescence (XRF) [ (V)

Water soluble ions Cl-, NO5, SO,%,

Ion Chromatography NH,*, Na*, Mg?*, K*, and Ca?*

Tire wear: alkanes (C;4-Cs¢)

Tire wear: pyrene, benzo(ghi)perylene,

fluoranthene, phenanthrene, and dibenzopyrenes
e Motor oil emissions: hopanes and steranes

Nonpolar organics, including PAHs
alkanes, cycloalkanes, hopanes,
steranes, phthalates

Thermal desorption
GC/MS

Rubber markers, including styrene, NR: isoprene, dipentene
pyrolysis-GC/MS isoprene, butadiene, dipentene, and BR: butadiene, vinylcyclohexene
vinylcyclohexene e SBR: styrene, butadiene, vinylcyclohexene

gét?égig:ance liquid Benzothiazole and derivatives e Tire wear
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PM,, concentrations were 2-3 times those of of
PM, .; Up/downwind differences were smalli
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Mineral dust and carbon were major PM components

I-56 Downwind, PM, 5 I-5 Downwind, PM,,

Others Others Main composition:
8.0%

10.6%

Mineral dust

44.8% * PM, ;: Organic matter (OM; ~30—
40%), mineral dust (~30%), and
elemental carbon (EC; ~10-15%)

Mineral dust
31.4%

oM 25.4%
37.2% .
S0, * PM,,: mineral dust (>40%), OM
6% (~25%); coarse NO5 due to Cl
EC 2 TN T 80, replacement
104% NH, 7 0.7% 2‘2; i%% P
1.1% o /o .
* More OM and EC% in PM, ; than
1710 Downwind, PM, , PM,,; more dust and others
Others | I-710 Downwind, PM,q (elements and ions) in PM,,
6.7% Others
Mineral dust 8.2%

Mineral dust

42.0% x OM=1.2 x OC

x Mineral dust = 2.2xAl + 2.49%Si +
1.63xCa + 2.42xFe + 1.94xTi

27.9%

7.7% o ) (Chow et al., 2015)

13.9% 3.5% - 2.6% 11.2% 3.7% 10
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Differences were found between
upwind/downwind and I-5/1-710

PM, 5 Composition « Downwind > Upwind

« ECis ~20% higher

°’°€ . ml-5 Upwind.
> m|-5 Downwind at I-710 than I-5
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High correlations were found among
elements from common sources

| Species | OC | EC /Mg | Al | Si | K [ Ca | Ti [ Mn | Fe | Co|CulZn|Sr|2zr Ba | W_
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Enrichment Factor

Vehicle-wear related elements were
enriched
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i — (X/Reﬂsample/(X/REf)UCC
| « X = element of interest
. « Ref = reference element (Al)
_ « UCC: the Earth’s upper
continental crust
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*[]1 shows wear-related elements
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I-710 had higher PAHs from diesel emissions
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I-710 PAH concentrations are 47% higher than I-5
Both highways have similar PAH distributions, but I-710 has higher fluoranthene and pyrene
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n-Alkanes indicate sources from lubricat

and unburnt diesel fuel
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I-5 n-alkanes were dominated by lubricating oil (C.., = 29)
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Tire tread was ~8.0% (I-5) and 5.5% (I-710) of PM, .

and PM,,
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Sampling Site and Period

« Qver half of the rubber is in coarse PM (2.5-10 pym)

< DRI

« Natural rubber concentrations at I-5 were higher than I-710

NR: natural rubber
BR: butadiene rubber
SBR: styrene—butadiene rubber
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Different tire manufacturers show different elemental and
organic abundances

Tire Particle Composition
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Examples of Source Profiles Explored

Brake Source Profiles (PM,,)

7
2! 10
= 1 :
= M Low Cu O High Cu
= 0.1
5 0.01
S  0.001
B 0.0001
£ 000001 TT TT M_ﬁ .|'.|-
> O B L LD 2 D @ D At o O XA O o R
FELL L o< ¢ O PLFO & &L
Ay A S N
Tire & Dust Profiles (PM )
* 10
[%2])
© 1 .
s o1 MW Tire [ODust
= .
a 0.01
S o001 sk
S 00001 m
S 0.00001 8
- D O o R
NN Q
<
0 Tailpipe Exhaust Profiles (PM, <)
A - *
g . § E = : PAHs M Gasoline O Diesel
= o0 |\ \ \ —
= .
% 0001 §
S 0.0001 §
% 0.00001 S
@
L

< DRI

Brake profiles:
Dynamometer studies
(CRPAQS, 2004; CARB, 2020)

Tire profiles: Tire dust
collected in the lab and
analyzed by DRI

Dust profiles: Dust samples
collected at monitoring sites,
and analyzed after
resuspension by DRI

Exhaust Profiles:
Dynamometer studies (Gas-
Diesel Split Study 2001,
CARB database)

*Potential markers for each
profile marked
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(Brake + Tire wear) = (Gasoline +

Diesel) in PM, .

I-5 Coast Corvette, PM, 5 (10.9 pg m3)
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(Brake + Tire wear) =

Diesel) in PM,,
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2% (Gasoline +

I-5 Coast Corvette, PM,, (32.5 ug m3)
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concentrations

Challenges in upwind/downwind sampling

» Varying wind and vehicle
induced turbulence

 Small differences between

upwind and downwind PM, .
and PM,, concentrations

 Interferences from other

sources
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Takeaways

« Average concentrations of near-road PM, - and PM,, were 10-15 and ~30 pg/m3,
respectively.

 Higher concentrations of EC, PAHs, and lower molecular weight n-alkanes were found
near I-710 than I-5, likely due to more diesel vehicles.

 High correlations were found for elements with common sources, such as markers for
brake wear (e.qg., Ba, Cu, and Zr) and road dust (e.g., Al, Si, K, and Ca ).

 For PM, , non-exhaust (brake + tire) contributions exceeded exhaust (diesel +
gasoline) for I-5 (29-30% vs. 19-21%); they were comparable for I-710 (15-17%
vs. 15-19%).

For PM,,, the non-exhaust contributions were 2 — 3 times the exhaust contributions.
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