

Blue Lake Rancheria's Community Air Quality Monitoring Projects Olivia S. Ryder, Cari L. Gostic, Hilary R. Hafner – Sonoma Technology Ava Iorizzo, William Matsubu – Blue Lake Rancheria

EPA 2024 National Ambient Air Monitoring Conference August 15, 2024

STI-8178 Photo credit: https://www.bluelakerancheria-nsn.gov/

Outline

- About Blue Lake Rancheria
- Current and future measurements
- T640 data
 - Wildfire impacts
 - Seasonal trends
 - Summary
- Air quality education efforts

About Blue Lake Rancheria

- Blue Lake Rancheria is in northwestern California, near Eureka and Arcata, five miles inland from the Pacific Coast
- Impacted by pollution from Hwy 299, local sources, wood burning, and wildfire smoke
- (At the time) Nearest regulatory PM_{2.5} monitors are:
 - Redding (~ 87 miles southeast)
 - Base of Mt. Shasta (~ 92 miles northeast).
- Complex mountainous terrain and microclimates make air quality highly variable

Blue Lake Air Monitoring Efforts: CARB

Received a CARB Community Air Protection Program grant to:

- Monitor PM_{2.5} concentrations with an FEM instrument
- Develop an air sensor network to assess the spatial variability of PM_{2.5} concentrations
- Engage with and educate community members

Air quality education for students and community members

🚹 kids making sense®

Blue Lake Air Monitoring Efforts: EPA

Received an EPA Enhanced AQ Monitoring for Communities to:

- Continue FEM monitoring for PM_{2.5} concentrations
- Determine the contribution of fossil fuel burning and woodsmoke burning to total BC
- Determine possible sources of metals and BC in the community

Establish a PM_{2.5} sensor network for hyperlocal air quality information

kids making sense

Black carbon and air toxics monitoring (AE33 & filter collection of metals)

Blue Lake Air Monitoring Efforts: CARB

Received a CARB Community Air Protection Program grant to:

- Monitor PM_{2.5} concentrations with an FEM instrument
- Develop an air sensor network to assess the spatial variability of PM_{2.5} concentrations
- Engage with and educate community members

Establish regulatory grade air quality monitoring for PM (T640) + met. data

Establish a PM_{2.5} sensor network for hyperlocal air quality information

Air quality education for students and community members

🚹 kids making sense®

Timeseries Overview

- Daily PM_{2.5} concentrations are mostly in the "good" AQI range
- Air quality in the summer and fall is strongly influenced by wildfire events

Hourly PM_{2.5} and 99th Percentile Concentration (red)

Wildfire Impacts

2023 Wildfire Events

Wildfire smoke blanketed Blue Lake during two main wildfire events in 2023

August 15-28 and September 19-23

Contributing fires:

- SRF Lightning Complex (CA)
- Smith River Complex (CA)
- South Fork Complex (CA)
- Anvil Fire (OR)
- Flat Fire (OR)

Hourly PM_{2.5} and 99th Percentile Concentration (red)

August Wildfire Event

Date	Max Hourly PM _{2.5}	Daily Mean PM _{2.5}	Daily Median PM _{2.5}	AQI
8/23/2023	86.4	19.9	13.5	Moderate
8/24/2023	57.0	25.7	18.3	Moderate
8/25/2023	15.4	12.1	12.7	Moderate
8/26/2023	23.9	16.3	14.2	Moderate
8/27/2023	61.7	30.3	20.7	Moderate
8/28/2023	4.3	28.2	29.7	Moderate
8/29/2023	44.2	12.6	12.7	Good
8/30/2023	144.4	21.3	8.9	Moderate
8/31/2023	57.6	18.1	12.3	Moderate

PurpleAir Network

 $PM_{2.5}$ in µg/m³ Observations (points) and linear regression (line)

- 20 sensors (indoor and outdoor)
 - 3 sensors online during August fires
 - PA data corrected using EPA correction
- R^2 between sensors and T640 = 0.76-0.77
- PA sensors are in good agreement with T640, though slightly underpredict PM_{2.5} concentrations

T640 PM_{2.5} Seasonal Results

Seasonal Variation in PM_{2.5} Concentrations

- High outliers in summer and fall related to wildfire smoke have been removed.
- Winter has the largest range, and the highest maximum concentrations, excluding outliers.
- Springtime shows the lowest overall concentration.

Fall (SON)

Seasonal Variation in PM_{2.5} Concentrations

- Winter, fall, and spring have highest PM_{2.5} concentrations in the evening.
 - Possibly woodsmoke and/or boundary layer compression effects.
- Diurnal variation is most pronounced in the winter.

Diurnal Variation

Wintertime PM_{2.5}

Wintertime PM_{2.5} concentrations are inversely correlated with temperature.

Season	Slope	P-value	R ²
Fall (SON)	-0.12	0.11	0.02
Winter (DJF)	-0.37	0.00	0.38
Spring (MAM)	0.08	0.13	0.02
Summer (JJA)	0.30	0.10	0.03

On average, a 1°F decrease in temperature is correlated with a 0.37 μ g/m³ increase in PM_{2.5} concentrations.

PM_{2.5} vs. Temperature

Wintertime PM_{2.5}

- Polar plot to determine PM_{2.5} "hot spot" locations and how they relate to wind speed
- Hourly data from December February
- Highest concentrations occur under low wind speeds, indicative of local sources
- Possible PM_{2.5} sources:
 - Subsection of Hwy 299
 - Local residential woodburning -
 - Timber mill, lumber company -

Next step: Black carbon monitoring to determine burning contribution vs. fossil fuel combustion component, under EPA grant funding

Summary

- Daily PM_{2.5} concentrations are mostly in the "good" AQI range
- Air quality tends to be best during the spring
- Air quality in the summer and fall is strongly influenced by wildfire events
- Air quality in the winter is correlated to temperature – likely a relationship between lower temperatures and increased residential woodsmoke

Air Quality Education

Kids Making Sense

Kids Making Sense[®] is an educational program to teach youth how to measure pollution using air quality sensors, to interpret the data they collect, and to take action to reduce emissions and air pollution exposure.

Flexible Curriculum

Student Workbook (Grades 6-12) Teacher's Guide Labs and experiments Aligned with NGSS & CC

(kids making sense

Small Sensors

Particulate matter Interactive data collection

Data Visualization

Data map for sharing and visualization

Online resources

Teacher Training

Classroom sessions with air quality scientists

() kids making sense

Air Quality Education at Blue Lake Rancheria

Air Quality Modules Created for Blue Lake Rancheria

Build a Sensor Kits

Learn about the various components that make up a particle sensor, the purpose of each piece, and then build a complete sensor!

kids making sense

Implementation

- Educators from Blue Lake Rancheria and the Humboldt County Office of Education have brought the program to 11 schools in the region
- Have also provided training to teachers to continue to increase program reach

"Orick Elementary loved the training so much that they have requested a Summer School Program inspired by it!"

- Alder Grove Charter School
- Alice Birney Elementary
- Arcata High School
- Blue Lake Elementary
- Eureka High School
- Hoopa High School
- McKinleyville High School
- Orick Elementary
- Redwood Coast Montessori
- Six Rivers Charter School
- South Fork High School

كالكاركاركاركاركاركاركاركا

Thank You

Blue Lake Rancheria

William Matsubu Environmental Director wmatsubu@bluelakeranc heria-nsn.gov

Ava lorizzo Environmental Coordinator aiorizzo@bluelakeranche ria-nsn.gov

Hilary R. Hafner Senior Scientist hilary@sonomatech.com

Cari Gostic Air Quality Data Scientist cgostic@sonomatech.com

Olivia S. Ryder Atmospheric Scientist oryder@sonomatech.com