

www.agilairecorp.com

Automation of Target / Reference Values in Automated QC Checks

Steve Drevik

Agilaire

info@agilaire.com

© TemplatesWise.com

Why?

For many years, agencies would program a fixed target (expected) value into the calibrator, put the same number into the DAS, and that was good enough for most high level checks (e.g., ~ 400ppb for ozone, NO, etc)

Lower concentration precision checks and lower potential sensor ranges have challenged this older approach.

As we moved to digital connections to the calibrators, we gained the ability to access 'actual concentration' or flow rates of cal gas and diluent gases.

Two Methodologies

- 1. If the calibrator offers an 'actual concentration' over its digital interface, we can use that.
- 2. If the calibrator doesn't offer it, or we don't trust it, we can calculate using diluent and cal gas flows:
- C_actual = (gas bottle conc) * (CGF) / (CGF+DAF+O3F)

CGF = cal gas flow (from bottle) DAF = dilution air low O3F = O3 generator flow

Acquiring The Data

Method 1 for common dilution calibrators:

Calibrator Brand	Ethernet/Modbus?	RS-232
Teledyne T70x series	Ozone only (Modbus) Gas concentrations via <u>http</u> interface only	ACTCONC
Thermo 146i / iQ series	Yes	146i – <i>gas conc</i> iQ – N/A
Serinus	Yes	N/A
Environics 6103	Not available	CONC OZONE ACTUAL? CONC GAS ACTUAL?

Method 1

The DAS should have a way to set recording the target value in the calibration record. For AirVision / 8872, "math constants" are used as internal holding registers to record target values, and then to store them as the reference/expected values in the record.

This can get tricky if calibrator digital interface is in ppm, but you report in ppb. "Scaling Factor" setting in the channel may need to be used to put calibrator parameter into correct units.

$\mathbf{\hat{O}}$. 0 =									AirVisio	n					-		×	
$\overline{}$	Home View Favorites	Data	Source Details																
🕼 Da	ta Source Details																	;	×
	-A PM10ltp	^ 🧔	Sequence:QC-O3 ×	🔼 o	Channel:ACTCON	vc 🛛 🛃 d	hanne	I:CAACFLOW	4	Channel:CA	ADFLOV	W 🔼 Chai	nnel:CAO3FL	WC	🔏 Channe	ls:CAMP_72			
	- A Tamb	E 🕄) Add 🔇 Delete 🕻	🗌 Сор	у													1	^
		Seq	uence Phase(s)	Alarm(s	;)														
		Phas	ses																
	 Calibrations 		PI	hase Na	ime		Phase	Number Δ	Durat	ion Time	Res	ponse Time	Enabled	Status Pa	attern	Level			
	- CO-SP-Z	•	O3-PREC					1 🌲	10M		5M		V	29	PI	REC			
	CO2ERO		PAUSE					2 🛨	1M		5S		V	Select L	ines				
	- NOX-SP-Z		O3-ZERO					3 🛓	10M		5M		V	28	Z	ERO			
	- NOX-Z-PR		STANDBY					4 🛓	0105		0055		V	31					
	- 0 03-SP-Z																		
	QC-NOX	Phas	se Channels																
			Channel	Δ	Expected Value	Expected Va From Const	alue tant	Write Expected To Consta	d Value ant	Write Re To Cons	esult stant	Store Calibratio Results	n Error Me	thod Wa	rning Drift Limit	Out of Contr Limit	ol		
	SO2-Z-PR		O3	-		K16						V	Difference	e	C)		0	
	 Digital Event Programs 	× 12	O3CAL	-	0.06				-	K16			Differenc	e	C)		0	
<	>																		×
												User: Ad	lmin Profile	local Ver	sion: 4.8.112	2 Build: 2024.06.04.2 6/2	7/2024	13:24	.:

© TemplatesWise.cor

NO / NO2 GPT Checks

Things get a little different when doing GPT checks, as we want to 'carry over' measurements from previous phases/steps to determine the NO2 target based on the analyzer response.

Here, we are storing the actual NO conc from the calibrator and the the NO result from the analyzer.

									AirVis	ion					-		×
	Home View Favorite	es	Data Source Details														
🕼 Dat	a Source Details																×
	- A PMFine	^	Sequence:NOX-SP-Z	×													
	A PMCoarse PM10sto		🕄 🔂 Add 🔇 Delete 🕻	Col	ру												
	- A Stat		Sequence Phase(s)	Alarm(s)												
	- A PM10ltp		Phases														
	- <u>A</u> Tamb		P	hase N	ame		Phase	Number ∆	Duratio	on Time	Response Time	Enabled	Status	s Pattern		Level	
	Pamb		CHARCHEK					1 🔹	10m		5m	V	1,	3,13	ZERO		
			NO-SPAN					2 📫	20M		5m		1,	3,19	SPAN		
	-Calibrations		NO2-SPAN					3 🛨	10M		5m	V	1,	3,20	SPAN		
	-@ CO-SP-Z		NOX-ZERO					4 🛨	10M		5m	V	1,	3,13	ZERO		
	-@ COZERO		STANDBY					5 📥	10s		5s	V		27			
	CO-Z-PRE																
	-O NOX-Z-PR		Phase Channels														
			Channel	Δ	Expected Value	Expected From Cor	Value nstant	Write Expected To Consta	d Value nt		Write Result To Constant	Store Calib Result	ration	Error Metho	d Warn	ing Drift .imit	Out Conf Lim
	- QC-NOX		ACTCONC	-	600					NO Actua	l result from 700 🦰 💻			Difference			
	- QC-03		CAO3FLOW	-	0.1					K02				Difference			
	QC-S02		NO	-	600					NO result	during non-titratio 🧲	-K6		Difference			
	S02-Z-PR		NO2	-	0							V		Difference			
	— Digital Event Programs		NOX	-	600							V		Difference			
	-Modbus Instruments	~															
<		>	<								ann Anlasia - Dan Elas Iana		0.112 0		04.2 6/2	7/2024	>

NO / NO2 GPT Checks

We use a math channel to calculate the target ("NOreduct span level") and use that as the expected / target value for NO2.

Z	2								AirVision				-		×
H Data Sot	ome View Favorites H V A	Data	a Source Details												
	- & PMFine - & PMCoarse - & PM10stp - & Stat	▲ ○ ▲ ○ ■ ○	Sequence:NOX-SP-Z Add 🔇 Delete quence Phase(s)	Co Alarm	ру (s)										
	A PM10ltp A Tamb	Pha	ses	Phase N	ame		Phase Number	Δ	Duration Time	Response Time	Enabled	Status Pattern		Level	
			CHARCHEK NO-SPAN				1	+ + +	10m 20M	5m 5m	V V	1,3,13 1,3,19	ZERO SPAN		
G	-Calibrations	•	NO2-SPAN NOX-ZERO				3	•	10M 10M	5m 5m	V	1,3,20 1,3,13	SPAN ZERO		
	- COZERO - COZ-PRE		STANDBY				5	•	10s	5s		27			
	@ NOX-SP-Z @ NOX-Z-PR	Pha	se Channels												
	- 03-SP-Z - 03-Z-PRE - 02-C0		Channel		Expected Value	Expe Fron	ected Value n Constant	Wri	ite Expected Value ∆ Constant	Write Result To Constant	2	itore Calibration Results	Error Method	Warni Li	ng Dri imit
	QC-NOX	•	ACTCONC	-	600								Difference		
	- QC-03 - QC-S02		NO	•	250					NO result during titrati	on phas	- 197	Difference		
	- SO2-SP-Z		NO2	•		NOReduct	span level						Difference		
	GO2-Z-PR GO2-Z-PR GO3 GO3		NOX	•	600							V	Difference		
		v 🗖							1111						
<	>	<													,

NO2_target = (K8/K6)*(K6-K7) or = (NOACT_700 / NOmeas[1]) * (NOmeas[2] - NOtitrate)

© TemplatesWise.con

NO / NO2 GPT Checks

Example:

During NO span:

- Calibrator reports NO = 600 Analyzer response NO = 580

During NO2 span:

Analyzer response NO = 230

 $NO2_target = (600/580) * (580-230) = 362.1$

NO2_target = (K8/K6)*(K6-K7) or = (NOACT_700 / NOmeas[1]) * (NOmeas[2] - NOtitrate)

Method 2

We acquire our three gas flows, and implement a math function in the logger to calculate the actual concentration from the bottle conc.:

N 9 97							Airvision						
	Home	View Favorites	Data Sour	rce Details									
((;) Di	ata Source Detai	SODEKENT	A 1749 -										×
		SODRKLMP	Seque	ence:QC-O3	Channel:ACTC	CONC ACFLOW	Channel:CAADFLOV	N 🏊	Channel:CAO3FLOV	N Kannels:C	AMP_72 ×		
		SOSLOPE											
		SOOFFSET	Drag a c	olumn header	here to group by th	at column.							
		SORCTEMP	JER . C. UL	Channel	, Channel	Description	Channel	5-11-1	Modbus	Driver	Serial	Base	
		SOBOXTMP	E Edit	Number	∆ Name	Parameter	Туре	Enabled	Instrument	Entry	Port	Interval	
		SOPMTTMP			🔳 CA 🛛 🔽								
		CAACFLOW	1		6 O3CAL	O3CAL	Modbus	V	API-703E	O3CAL Conc		001m	
		CAADELOW CAOSELOW	1		70 CAACFLOW	Cal Actual Cal Flow	Modbus	V	API-700EU	Cal Gas Flow Rate		001m	
		CACPRESS	1		72 CAADFLOW	Cal Actual Diluent Flow	Modbus	V	API-700EU	Dil Flow Rate		001m	
	-3	CADPRESS	1		73 CAO3FLOW	Cal Actual O3 Flow	Modbus		API-700EU	O3 Gen Flow Rate		001m	
		TEMPK	1		74 CACPRESS	Cal Cal Gas Pressure	Modbus	V	API-700EU	Cal Gas Press		001m	
		PMFine	1	1	75 CADPRESS	Cal Dil Gas Pressure	Modbus	V	API-700EU	Diluent Pressure		001m	
								AITVISIO	n				
H ata Soi	lome urce Detail	View Fav	vorites	Data	Source Detail	s		AITVISIO	n				
H ata Soi	lome urce Detail	View Fav Is	vorites	Data S	Source Detail	S Charmeliá		AITVISIO	n				
H ata Soi	lome urce Detail	View Fav Is Stat PM10lto	vorites	Data S	Source Detail	s		AITVISIO	n 				
H ata Soi	ome urce Detail	View Fav Is Stat PM10ltp Tamb	vorites	Data :	Source Detail equence:QC-C nnel Valida	s 03 Schannel:Ad		AITVISIO	n				
H ata Soi	ome urce Detail	View Fav Is Stat PM10ltp Tamb	vorites	Data s Char	Source Detail equence:QC-C nnel Valida	s 03 Schannel:Ad		AITVISIO	n				
H ata Sou	ome urce Detail	View Fav Is Stat PM10ltp Tamb Pamb	vorites	Data :	Source Detail equence:QC-C nnel Valida	s 03 S Channel:Ad tion Misc	CTCONC ×	AITVISIO	n				
H ata Sou	ome urce Detail – Å – Å – Å	View Fav Is Stat PM10ltp Tamb Pamb RHAMB	vorites	Data S Char F	Source Detail equence:QC-C nnel Valida Round Constitu	s D3 Channel:A(tion Misc ents	CTCONC ×	AITVISIO	n 				
H ata Sou	ome urce Detail	View Fav s Stat PM10ltp Tamb Pamb RHAMB ACTCONC	vorites	Data S Char F M	Source Detail equence:QC-C nnel Valida Round Constitu lath Equation	s Channel:A(tion Misc ents (CAACFLOW*K01)		DFLOW+	CAO3FLOW)	*1000			
H ata Sou	lome urce Detail	View Fav Is Stat PM10ltp Tamb Pamb RHAMB ACTCONC ations	vorites	Data S Char F M	Source Detail equence:QC-C nnel Valida Round Constitu Iath Equation	s Channel:A(tion Misc ents (CAACFLOW*K01)		DFLOW+	CAO3FLOW)	*1000			
H ata Sou	ome urce Detail	View Fax Stat PM10ltp Tamb Pamb RHAMB ACTCONC ations CO_SP-7	vorites	Data S Char F M	Source Detail equence:QC-C nnel Valida Round Constitu fath Equation	s Channel:Ad tion Misc ents (CAACFLOW*K01)		DFLOW+	CAO3FLOW)	*1000			
H ata Sou	Iome urce Detail	View Fax Stat PM10ltp Tamb Pamb RHAMB ACTCONC ations CO-SP-Z	vorites	Data S Char F M	Source Detail equence:QC-C nnel Valida Round Constitu lath Equation	s Channel:A(tion Misc ents (CAACFLOW*K01)	CTCONC ×	DFLOW+	CAO3FLOW)	*1000			
H ata Sou	Iome urce Detail	View Fax Stat PM10ltp Tamb Pamb RHAMB ACTCONC ations CO-SP-Z COZERO	vorites	Data S Char F	Source Detail equence:QC-C nnel Valida Round Constitu lath Equation	s Channel:Ad tion Misc ents (CAACFLOW*K01)	CTCONC ×	DFLOW+	CAO3FLOW)	*1000			
H ata Sou	ome urce Detail	View Fax Stat PM10ltp Tamb Pamb RHAMB ACTCONC tions CO-SP-Z COZERO CO-Z-PRE	vorites	Data S Char F M	Source Detail equence:QC-C nnel Valida Round Constitu lath Equation	s Channel:Ad tion Misc ents (CAACFLOW*K01)	CTCONC ×	DFLOW+	CAO3FLOW)	*1000]
H ata Sou	ome urce Detail	View Fax Stat PM10ltp Tamb Pamb RHAMB ACTCONC ations CO-SP-Z COZERO CO-Z-PRE	vorites	Data S Char F M	Source Detail equence:QC-C nnel Valida Round Constitu 1ath Equation	s Channel:Ad tion Misc ents (CAACFLOW*K01)	CTCONC ×	DFLOW+	CAO3FLOW)	*1000			

Method 2

Why this method?

The RS-232 method (and potentially the HTTP method) from the T700 may not offer enough digits of precision since it's parsed from text.
 (as opposed to Modbus = full floating point representation).

Also note that it's been found that O3 flow may not go perfectly to zero during non-titration. One solution is to use the "Secondary Value" on math constants as a multiplier for O3 flow, e.g.:

DILFLOW + CALFLOW + K07*O3FLOW (K3=1 during GPT, 0 otherwise)

Thanks to Erick Mattson and Phillip Stauffer at Colorado Department of Public Health and Environment for 'in the field' details.

www.agilairecorp.com

Questions?

Steve Drevik Agilaire

info@agilaire.com

© TemplatesWise.com