# Hyperlocal Mobile Monitoring of Particle-Bound Metals in Two Environmental Justice (EJ) Communities in the South Coast Air Basin

**Payam Pakbin**, Mohammad H. Sowlat, Christopher Lim, Steve Boddeker, Julia Montoya-Aguilera, Zihan Zhu, Faraz Ahangar, Sina Hasheminassab, Andrea Polidori, Jason Low

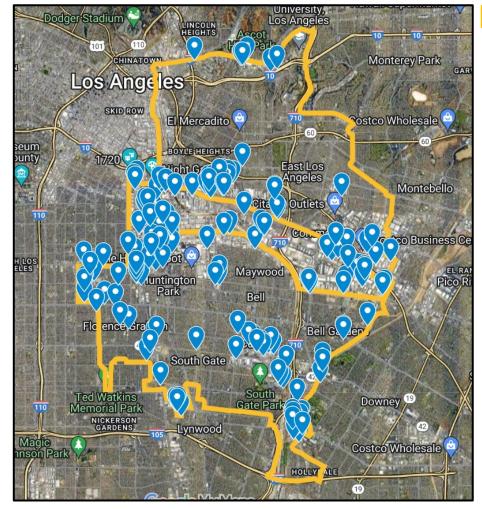
Advanced Monitoring Technologies,

Monitoring & Analysis Division,

South Coast Air Quality Management District, Diamond Bar, CA, USA



Acknowledgements:
U.S. EPA's Community-Scale Air Toxics Grant
(XA-98T17501)




# EAST LOS ANGELES (ELA) & SOUTHEAST LOS ANGELES (SELA) EJ COMMUNITIES

- More that 150 metal processing facilities in these two communities
- Mobile monitoring can be used to survey a large number of facilities quickly. This, in turn, can inform where to conduct in depth stationary measurements

### **Study Objectives:**

- Develop two survey platforms, one for mobile and one for stationary measurements of metals
- Deploy the platforms for hyperlocal, near-source monitoring in ELA & SELA communities
- Perform supplementary measurements at air monitoring stations
- Perform source apportionment to identify major contributing sources







Location of Metal Facilities



# AIR MONITORING INVESTIGATIONS NEAR METAL PROCESSING FACILITIES

- Determine priority areas based on the location of facilities
- Mobile monitoring in priority areas
- Identify locations with elevated concentrations

**Area Surveys** 

# Emissions & Exposure Characterization

- Identify facilities within areas with elevated levels
- Conduct measurements near priority facilities and receptors

- Identify facilities with potential to contribute to elevated levels
- Assess inspection and compliance history

**Compliance Assessment** 

# Compliance & Enforcement Activities

- Conduct onsite inspections
- Take necessary enforcement action



### MULTI-METALS SURVEY PLATFORMS





### Capabilities & Objectives:

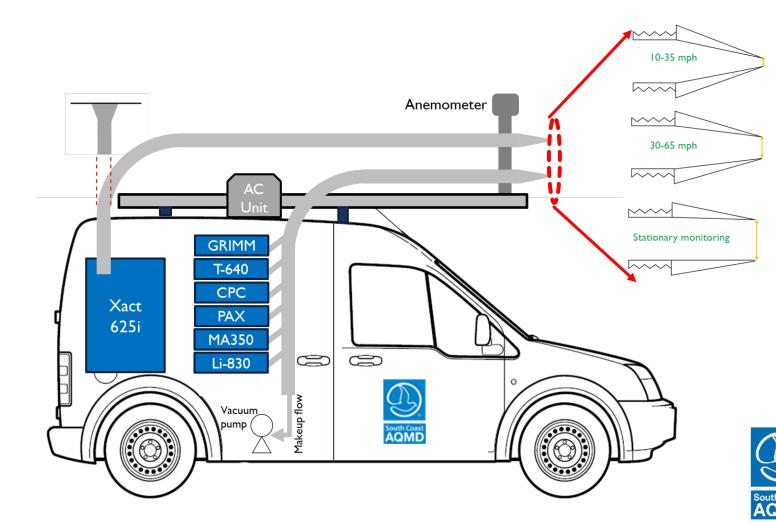
- On-road mobile measurements
- Identify **areas with elevated levels** of air toxic metals
- Assess potential community impact



# Stationary Multi-Metals Platform (SMMP)

### Capabilities & Objectives:

- Larger battery capacity for longer-term measurements
- Characterize emissions & potential exposure near facilities (e.g., diurnal patterns, day of week, etc.)




### MULTI-METAL MOBILE PLATFORM (MMMP)

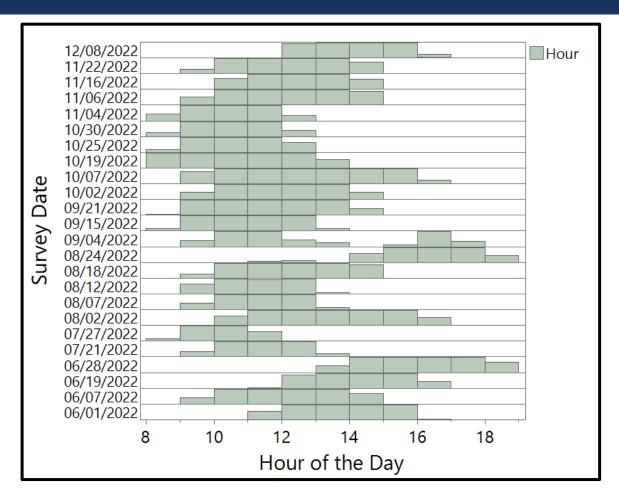











# MMMP Instrumentation

Modular design allows installation of other air monitors depending on monitoring objectives

| Instrument                                | Pollutant<br>measured                                         | Time resolution | Manufacturer                                 |  |
|-------------------------------------------|---------------------------------------------------------------|-----------------|----------------------------------------------|--|
| Xact 625i                                 | Particulate metals                                            | 5 min           | Cooper Environmental LLC                     |  |
| GRIMM I I-D                               | PM <sub>X</sub> , Number Size<br>Distribution (0.25-35<br>μm) | 6 sec           | GRIMM Aerosol GmbH,<br>Muldestausee, Germany |  |
| T-640                                     | PM <sub>2.5</sub> , PM <sub>10</sub>                          | IO sec          | Teledyne API, CA, USA                        |  |
| MAGIC Condensation Particle Counter (CPC) | Particle Number<br>(PN)                                       | l sec           | Aerosol Dynamics Inc.,<br>CA, USA            |  |
| Photoacoustic Extinctiometer (PAX)        | Black Carbon (BC)                                             | l sec           | Droplet Measurement<br>Technologies, CO, USA |  |
| MA-350                                    | Black Carbon (BC)                                             | l sec           | AethLabs, CA, USA                            |  |
| Li-830                                    | CO <sub>2</sub>                                               | l sec           | LI-COR Biosciences,<br>USA                   |  |
| Airmar 200WX                              | Wind Speed and<br>Wind Direction                              | l sec           | Airmar Technology<br>Corporation, NH, USA    |  |



### OVERVIEW & LOCATION OF MOBILE SURVEYS



SELA Metal Facilities

SELA Boundary

Los Angeles

ELA Metal Facilities

ELA Boundary

ELA Boundary

Identified Clusters

Avalor

Garden

South Gate

Avalor

South Gate

Downey

<u>24</u> survey days (June 2022 through December 2022)

> 130 hours of measurements within the community.

Measurements were conducted in AB 617 communities of ELA and SELA communities.

Lynwood

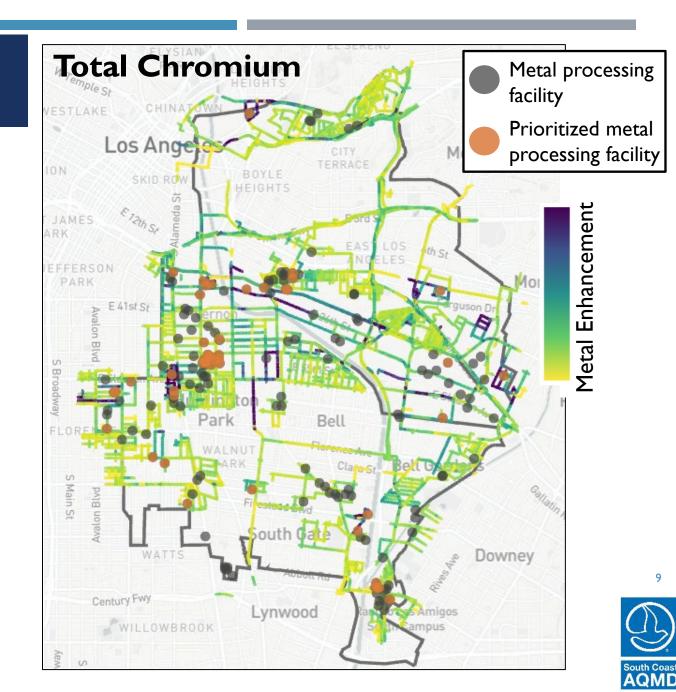


| Species         | Soil Dust | Ind/Traff | Traffic | Traff/Ind | Ind/Traff |
|-----------------|-----------|-----------|---------|-----------|-----------|
| K               | 0.91      | 0.26      | 0.03    | 0.00      | 0.02      |
| Si              | 0.90      | 0.18      | 0.01    | 0.00      | -0.03     |
| GRIMM Ccarse    |           |           |         |           |           |
| PM              | 0.87      | -0.04     | 0.11    | 0.20      | 0.12      |
| Ca              | 0.82      | 0.22      | 0.19    | 0.01      | 0.10      |
| Ti              | 0.81      | 0.36      | 0.19    | -0.04     | 0.06      |
| GRIMM PM I 0-35 | 0.75      | -0.09     | 0.14    | 0.09      | 0.11      |
| Cr              | -0.01     | 0.93      | -0.04   | 0.01      | 0.17      |
| Ni              | -0.04     | 0.92      | -0.03   | 0.01      | 0.15      |
| Mn              | 0.36      | 0.82      | 0.07    | 0.00      | 0.15      |
| Fe              | 0.46      | 0.77      | 0.29    | -0.04     | 0.14      |
| Cu              | 0.06      | 0.50      | 0.42    | -0.12     | 0.04      |
| V               | 0.23      | 0.44      | -0.11   | 0.10      | 0.01      |
| PAX-BC          | 0.18      | -0.03     | 0.84    | 0.26      | 0.03      |
| MA350-BC        | 0.13      | -0.01     | 0.83    | 0.21      | 0.01      |
| CO2             | 0.17      | 0.08      | 0.79    | -0.01     | -0.05     |
| Ba              | 0.16      | 0.06      | 0.72    | -0.20     | -0.04     |
| PN              | -0.07     | -0.03     | 0.42    | 0.13      | 0.09      |
| GRIMM PM I      | 0.04      | -0.01     | 0.16    | 0.94      | -0.01     |
| GRIMM PM2.5     | 0.23      | -0.02     | 0.16    | 0.91      | 0.05      |
| Zn              | -0.04     | 0.06      | 0.00    | 0.74      | -0.03     |
| As              | 0.14      | 0.17      | 80.0    | -0.02     | 0.86      |
| Pb              | 0.11      | 0.25      | -0.02   | 0.01      | 0.82      |

### FACTOR ANALYSIS

### **Objectives**

- Used as a preliminary source factor identification
- Used to group the analytes into factors that have a common source/nature
- Helps identify chemical markers for different emission sources


### **Source Factors**

- I. Soil dust
- 2. Traffic
- 3. Industrial / traffic



### CONCENTRATION MAPPING

- Concentration enhancement maps are made for all metals measured
- Focus on air toxic metals and chemical tracers of different sources of metals emissions
- Areas with relatively elevated ambient levels of metals are determined
- Facilities within or in proximity of these areas are identified



# I. MINERAL/SOIL DUST (SOIL DUST): ONGOING EFFORTS AND NEXT STEPS



Elevated levels of mineral dust tracers highlight the impact of resuspended dust

### Source identification:

- Natural sources can contribute to ambient levels of metals
- The contribution of suspended mineral dust is much higher in rural areas

### Source contribution:

- South Coast AQMD is conducting a source apportionment study to quantify the contribution of different sources to the measured metals levels
- South Coast AQMD is conducting a comprehensive dust characterization study in East Coachella Valley as
  part of the Community Air Monitoring Plan (CAMP) implementation in this community



### 2. RESUSPENDED ROAD DUST (TRAFFIC): ONGOING EFFORTS AND NEXT STEPS



Consistent elevated levels of metals were observed on freeways, major roadways, and on- and off-ramps

### **Source identification:**

- Non-exhaust traffic emissions that deposit on roadways and become resuspended due to traffic and/or wind (e.g., brake, tire, clutch, and engine wear and abrasion of roads)
- Near-road air monitoring (source characterization):
  - A comprehensive road dust air monitoring study at two near-road sites will be conducted as part of South Coast AQMD's Multiple Air Toxics Exposure Study (MATES VI) (beginning early 2025)
- Real-time metals monitoring:
  - The real-time metals monitoring network has been expanded as part of the California Air Protection Program (AB 617)



# 3. METAL PROCESSING FACILITIES (INDUSTRIAL): ONGOING EFFORTS AND NEXT STEPS



Relatively elevated levels of metals were observed near some clusters of metal processing facilities

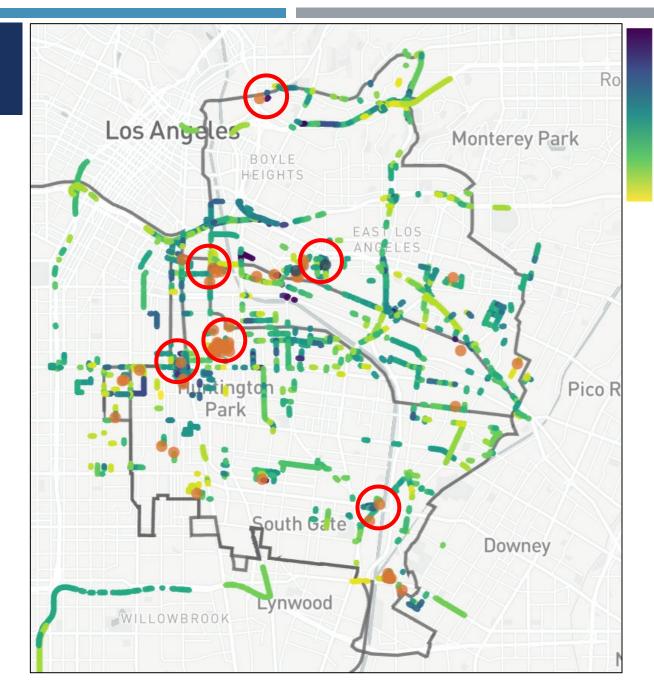
### Follow up measurements:

- Perform follow-up stationary measurements in areas with elevated ambient levels of metals
- Ambient levels were relatively lower in the residential areas

### Identification of potential sources:

- All metal processing facilities located within or near areas with elevated ambient levels of metals were
  identified
- Prioritization of compliance and enforcement activities:
  - Air monitoring data has been used to better prioritize facility inspections leading to emission reductions
  - The MMMP will be available to support future efforts




### FOLLOW-UP ACTIVITIES

Based on the results of the mobile monitoring surveys some facilities and areas have been identified for inspections and follow-up air monitoring

Prioritized facilities for inspection

Prioritized areas for follow-up stationary measurements

**Prioritization Criteria:** Concentrations of at least two metals (Cr, Ni, As, Pb) > 80<sup>th</sup> percentile



# COMPLIANCE AND ENFORCEMENT ACTIVITIES INFORMED BY AIR MONITORING EFFORTS

- A total of 52 inspections were conducted at the prioritized metal processing facilities
- The inspections led to
  - Notices of Violation to 4 facilities
  - Notices to Comply to 9 facilities
  - 5 facilities out of business and/or occupied by new businesses not requiring South Coast AQMD permits



### **SUMMARY**

- Hyperlocal mobile measurements of particulate metals were performed in two Environmental Justice Communities (East Los Angeles and Southeast Los Angeles)
- Preliminary factor analysis helped identify three main source factors:
  - Soil dust, Traffic (e.g., non-tailpipe emissions), Industry (e.g., metal processing facilities)
- Findings were used to inform compliance efforts to better prioritize facility inspections to potentially achieve emission reductions in these communities
- Information obtained in this study has led to the development of plans to perform full PM speciation at two near-road sites, as part of the next <u>Multiple Air Toxics Exposure Study (MATES VI)</u> conducted by South Coast AQMD (tentative starting date: early 2025)



### **QUESTIONS & COMMENTS?**

### Payam Pakbin, PhD

Atmospheric Measurements Manager Advanced Monitoring Technologies Monitoring & Analysis Division South Coast AQMD

Email: ppakbin@aqmd.gov

http://www.aqmd.gov/nav/about/initiatives/environmental-justice/ab617-134/ab-617-community-air-monitoring

