

Multi-year Performance Evaluation of Three Types of FEM PM_{2.5} Monitors Operating Within the South Coast Air Basin

Xiang Li, Raul Dominguez, Brandon Feenstra Quality Assurance, Monitoring and Analysis Division South Coast Air Quality Management District

South Coast AQMD's Air Monitoring Network

- **35+** permanent air monitoring sites
- 17 FRM PM_{2.5} stations
- **19** continuous PM_{2.5} stations
 - o 9 Non-FEM
 - **10 FEM**
- In Rubidoux, PM_{2.5} is measured using the FRM filter-based method, Met One BAM-1020, Teledyne T640, and GRIMM EDM model 180.

Filter-based Federal Reference Method (FRM)

- Deposit PM_{2.5} from ambient air onto a filter
- Filter is weighed before and after sampling to determine PM_{2.5} mass
- 24-hour sample collection period
- "Gold standard" for PM_{2.5} measurements, directly comparable to federal standards
- Labor intensive and slow-reporting process

Partisol® Plus 2025 Sequential Sampler (Thermo 2018). Photo adapted from Department of Ecology, State of Washington: https://apps.ecology.wa.gov/publications/docume nts/1802020.pdf

Automated Continuous Federal Equivalent Method (FEM)

Met One BAM-1020

Teledyne T640

GRIMM EDM Model 180

- Can be used to supplement FRM when needed, if performance checks are passed
- Provides near real-time data, useful for public information
- Less labor-intensive than FRM
- Potential bias due to sampling process difference from FRM, particle source variations and environmental conditions

Sources of instrument photos: Met One BAM-1020 <u>http://www.vcapcd.org/aq_monitoring.htm</u>; Teledyne T640 <u>https://www.cleanair.com/product/teledyne-api-t640x/</u>; GRIMM EDM Model 180 <u>https://www.environmental-expert.com/products/grimm-</u> model-edm180-environmental-dust-monitor-for-approved-pm-measurements-ams-699121.

Why compare FEM to FRM?

South Coast AQMD

- Met One and Teledyne are the largest suppliers of FEM PM_{2.5} instruments
- Provides an assessment on biases between two methods
- Informs decisions on purchasing FEM monitors
- Replacing FRM with FEM reduces labor but may impact design values

PM_{2.5} Continuous FEMs Reporting to AQS parameter code 88101 from 2017 to 2022. *Figure credit: Tim Hanley, EPA-OAQPS-AQAD, Ambient Air Monitoring Group.*

Rubidoux Air Monitoring Station

RIVR Site Survey Report

- Highest PM_{2.5} pollution in the South Coast Air Basin
- Residential neighborhood next to busy highway
- Measures PM_{2.5} using filter-based FRM and three FEM monitors (BAM1020, GRIMM, and T640)
- Site also monitors for:
 - \circ PM_{2.5} speciation
 - Other criteria pollutants (e.g., NOx and CO)
 - Meteorological conditions (mixing layer height wind speed and direction, RH, temperature, etc.)
 - VOCs, and other air toxics
- Primary field site for testing low-cost sensors under the AQ-SPEC program

Research Questions

How do PM_{2.5} measurements from 2021-2023 collected by three FEM monitors at Rubidoux compare to FRM PM_{2.5} data?

- How do FEM PM_{2.5} monitors perform relative to FRM?
- Are there any differences/biases in PM_{2.5} measurements among FEM monitors?
- Do FEM-to-FRM differences follow any patterns (e.g., seasonal, weekday/ weekend, diurnal)?
- Are FEM-to-FRM differences related to meteorological conditions such as relative humidity? Are differences related to PM_{2.5} speciation?

PM_{2.5} Data Used in This Study

- Data collected from 2021 to 2023
- FRM and BAM1020 have almost complete data coverage
- T640 data started in December 2021 for this analysis
- GRIMM data capture
 impacted by frequent factory
 calibration/maintenance
- U.S. EPA correction factor was applied to all T640 data used in this study

FEM-to-FRM-Ratio for Different FEM Monitors

- GRIMM monitor has the highest FEM-to-FRM-ratio, while BAM1020 has the lowest
- Concentrations measured by T640 and GRIMM are generally higher than FRM measurements

Correlations Between FEM and FRM Monitors

T640

GRIMM

BAM

 BAM1020 measures slightly lower PM_{2.5} concentrations compared to FRM, while T640 and GRIMM measure higher PM_{2.5}

- BAM1020 tends to measure lower PM_{2.5} than FRM in winter months and slightly higher in summer months
- T640 tends to measure higher PM_{2.5} than FRM in April-June and September-October
- GRIMM monitor does not show a strong seasonal pattern

Impact of PM2.5 Mass to the FEM-to-FRM Difference

- BAM1020 measures lower $PM_{2.5}$ than FRM when FRM $PM_{2.5}$ is over 25 µg/m³
- For T640 and GRIMM monitors, the FEM-to-FRM difference increases with higher PM_{2.5} concentrations when FRM PM_{2.5} concentrations are below 25 μg/m³

Diurnal Trend of FEM Measurements

- For this plot, BAM1020 is used as a benchmark
 - Green line: difference between GRIMM and BAM1020 readings
 - Red line: difference between T640 and BAM1020 readings
- GRIMM monitor tends to measure higher
 PM2.5 levels
- Nighttime and early morning are colder and more humid, which increases the amount of liquid water and, consequently, enhances aerosol light scattering.

Other Factors Impacting FEM-to-FRM Comparison

Correlation Coefficient (R):

	Т	RH	OC	EC	Nitrate	Sulfate	Ammonium Ion
BAM	0.35	-0.18	-0.03	-0.20	-0.38	0.18	-0.34
T640	0.15	0.28	0.16	-0.20	0.34	0.55	0.43
GRIMM	-0.03	0.24	0.19	-0.05	0.37	0.38	0.39

- Increased humidity enhances particle light scattering
- Cold and humid conditions tend to increase inorganic ions concentration in $\text{PM}_{\rm 2.5}$

Conclusions

- FEM and FRM measurements were strongly correlated.
- Understanding FEM-to-FRM differences is important for:
 - Informing decisions on purchasing FEM monitors
 - Assessing the impact on Design Values if FRM samplers are replaced by FEM monitors
 - Overestimations of PM2.5 concentrations by light scattering FEM instruments are probably caused by several factors, including relative humidity (RH) and the presence of inorganic ions.
 - Increased RH enhances PM_{2.5} light scattering
 - Inorganic ion concentrations in PM_{2.5} are higher under cold and humid weather conditions

Acknowledgement

From left:

Kyle Ryan, Air Quality Instrument Specialist;

Matthew Prather, Senior Air Quality Instrument Specialist;

Michael Koch, Senior Air Quality Instrument Specialist;

Not in the photo:

Nicole Saavedra, Administrative Assistant

QA Group at South Coast AQMD

From right: Brandon Feenstra, Ph.D., Quality Assurance Manager; Xiang Li, Ph.D., Program Supervisor; Brian Vlasich, Air Quality Specialist; Raul Dominguez, Ph.D., Senior Air Quality Chemist

If you have questions, please contact Dr. Xiang Li at xli@aqmd.gov.

Back-up slides

T640 Data Alignment

- On May 13, 2024, EPA retroactively applied a correction factor to all PM_{2.5} mass data collected using Teledyne T640 monitors reported to AQS
- Correction factor calculations dependent on ambient temperature and the raw PM_{2.5} value
- The correction factor was applied to all T640 data used in this study

Correlations Between FEM and FRM monitors

- BAM1020 and T640
 have R² to FRM
 measurements >0.9
 while the GRIMM
 monitor R² >0.80
- BAM1020 measures slightly lower PM_{2.5} concentrations compared to FRM, while T640 and GRIMM measure higher PM_{2.5}
- Data alignment improved T640 comparison to FRM

Weekday and Weekend patterns of FEM-to-FRM Difference

- BAM1020 shows a slightly higher FEM-to-FRM difference on weekends compared to weekdays
- T640 and GRIMM monitors do not show an obvious weekday/weekend trend

Conclusions

- Met One BAM-1020, Teledyne T640, and GRIMM EDM Model 180 show strong correlations with FRM measurements. The BAM-1020 measures lower PM_{2.5} in winter and slightly higher in summer, while the T640 tends to measure higher PM_{2.5} in spring and fall.
- T640 and GRIMM typically measure higher $PM_{2.5}$ compared to the FRM, while BAM-1020 measures slightly lower. The BAM-1020 records lower PM2.5 when concentrations exceed 25 µg/m³. In contrast, T640 and GRIMM show increased FEM-to-FRM differences as $PM_{2.5}$ concentrations increase when FRM $PM_{2.5}$ concentrations are below 25 µg/m³.
- Compared to the BAM-1020, both T640 and GRIMM monitors measure higher PM_{2.5} in the late afternoon and night. FEM-to-FRM differences for T640 and GRIMM correlate with nitrate, sulfate, and ammonium ion.
 - Further analysis is required to confirm these trends and investigate their underlying causes.